

Summary of Laser Plasma Session

Jian Zheng

University of Science and Technology of China

3rd Asia-Pacifc Conference on Plasma Physics, Hefei, November 4-8, 2019

Prof. K. Mima and Prof. Y. Mori;
 The speakers who provide summary slide;
 All delegates who attend the laser plasma

session

Outline of the Summary

1 Overview of Laser Plasma Session

Outline of the Summary

1 Overview of Laser Plasma Session

Overview of the Laser Plasma Session

Plenary	Semi-Plenary	Invited	Oral	Poster		
4	6	35	8	2		
Total: 55						

Sub-fields	Invited and Oral	
Relativistic Laser	15	
High Energy Density Physics	15	
Laser Fusion	13	

Outline of the Summary

1 Overview of Laser Plasma Session

Physics for laser power from 1 PW to 100 PW (Baifei Shen, PL-18)

- 1. The progress of physics with TW-PW laser
- Electron acceleration (nano wire injection and plasma density modification) and positron generation
- Proton and heavy ion acceleration (light pressure acceleration, shock acceleration and wakefield acceleration)
- 2. The status of SULF and the planned experiments
- 10 PW will be ready soon.
- 10GeV electron and 100 MeV proton acceleration are planed.

3. The status of SEL@SHINE and the planned experiments

- Experiment for vacuum QED effect is designed.
- XFEL serves as a good probe for high energy density physics experiments.

Recent progresses on high quality and staged laser wakefield acceleration at SJTU

SJTU-1:High quality ionization injection

 Control the wake!
 Injection length can be controlled within ~100μm, 5% energy spread for a few hundreds MeV electrons.

Min Chen

(U40 winner)

LPL-4

M. Zeng et al., POP, 21, 030701 (2014).

้ ฮ_ 0.15 (c)

S. Li, N. Hafz, et al., Opt. Express 22, 29578 (2014). M. Mirzaie, S. Li, N. Hafz et al., Sci. Rep. 5, 14659 (2015)

SJTU

2. Control ionization! Injection length can be limited to ~10 µm. Simulation shows energy spread can be smaller than 0.5%.

中国科学技术大学

SJTU-2: Curved Plasma channel based

LWFA staging

$$i\frac{\partial a}{c\partial t} = \left[-\frac{c}{2\omega_l}\frac{\partial^2}{\partial r^2} + \frac{\omega_l}{2c}\frac{n_0}{n_{cr}}\left(1 + \frac{\Delta n}{n_0}\frac{r^2}{w_0^2}\right) - \frac{\omega_l}{c}\frac{r}{R}\right]a$$

R can be a variable of laser propagation distance.

J. Luo, M. Chen, W.Y. Wu, et al. PRL, 120, 154801 (2018)

SJTU-3: Radiation from helical plasma undulator

Laser and e⁻ beam center trajectories

SJTU Future: Two lasers + challenge studies + applications

SJTU Main plans: Upgrade the current 200TW to 200+800TW two-beam system.

- 1. Demonstration of high quality two-color laser ionization injection (~0.1% Energy spread, low emittance)
- 2. Staged laser wakefield acceleration (curved plasma channel, $1 \text{GeV} \rightarrow 1.5 \text{GeV}$)
- 3. LWFA based nonlinear Thomson scattering sources

New LLP Building (7500m²) 200TW+800TW

Curved plasma channel based controlled radiation and staging studies.

LWFA based electron, photon source & Applications

3D PIC simulations verify the method of Ionization-stabilized Laser Ion RPA

X. F. Shen et al., PRL **118**, 204802 (2017)

intense Laser Matter Interaction

Group

Osaka University Masahiro Yano

Possibility for observing Hawking-like effects via the interaction of multi-PW class laser pulses with plasmas

Electron bunch undergoing extraordinary strong acceleration emulating the behavior of electrons near black holes is found in a certain condition

Requirement of electron density Probing space-time effect using multi-PW laser

plasma interaction via Thomson scattering Hawking-like shift

Spectral broadening

(U30 winner)

L-09

$$S(\omega, \theta_1, \theta_2) = \int S^D (\omega - x, \theta_1, \theta_2) S^H(x) dx$$

- High density -> to get efficient scattered light
- Strong acceleration -> maximize Hawking-like shi
 - Low transverse velocity spread -> minimize ۲ Doppler shift

We call it 'super-acceleration'

Osaka University Laser-plasma interaction in overdense plasmas under strong magnetic fields

Laser-plasma interaction in overdense plasmas under strong magnetic fields

 We propose a new ion-heating • mechanism in overdense plasmas by the collapse of standing whistler waves.

Takayoshi Sano

L-I38

• This mechanism could be applicable to various plasma phenomena, not only laser plasmas but also magnetic confinement fusion and planetary magnetosphere. Ultrafast Generation of Thermal Fusion Plasma

Typical Parameters
$$n_{e0}/n_c\sim 30$$
 $B_{\rm ext}/B_c\sim 10$ $a_0\sim 3$

L-I21 Magnetized plasma based q-plate for generation of intense optical vortices By Qing Jia (USTC), et al.

$E_0(r)\hat{\boldsymbol{e}}_{L,R} \rightarrow E_0(r)\exp(il\alpha)\hat{\boldsymbol{e}}_{R,L}$

Sengupta, L-I30

First time

verified using PIC simulation

<u>Summary of Results on Buneman instability</u> (Non-relativistic Case)

1. At the quasilinear saturation point (Hirose et, al.)

$$\sum_{k} \frac{\left|E_{k}\right|^{2}}{16 \pi W_{0}} \approx \left(\frac{m}{M}\right)^{\frac{1}{3}}$$

2. At the final saturation point (Ishihara et. al.)

$$\sum_{k} \frac{\left|E_{k}\right|^{2}}{16 \pi W_{0}} \geq 0.11$$

3. After the final saturation formation of coupled holes solitons are seen.

Seen in PIC simulation

Found to be consistent with Saeki's model

Roopendra Singh Rajawat and Sudip Sengupta; Phys. Plasmas 24, 122103 (2017)

Particle-in-Cell Simulation for the Transport of Particle Beams in Large Plasmas

Energy Loss of Particle Beams in Plasmas:

- Low density beam, consistent with single particle stopping power model
- High density beam, collective electromagnetic effects becomes important.

Collaborative, user-friendly GitHub • python interface

Educational resources online documentation • tutorials

High-performance MPI-OpenMP • load balancing • vectorization

Physics ionisation • collisions • strong-field QED

Advanced solvers high orders • multi-geometries • laser envelope

maisondelasimulation.fr/smilei

Perez, L-I28

J. Dérouillat M. Lobet

A. Beck F. Massimo I. Zemzemi

... and many more

Derouillat et al., CPC 222 (2018)

Outline of the Summary

1) Overview of Laser Plasma Session

LPL-2	Chuansheng Liu	University of Maryland	Raman scattering: A summary of five decades of theory, experiment and simulations
LPL-3	Dimitri Batani	University of Bordeaux	Progress in shock ignition
LPL-5	Ke Lan	IAPCM	Progress in spherical hohlraum studies and experimental campaign on high energy laser facilities in China
L-I14	Qiong Li	IAPCM	The Application of Simulated Annealing Method in the Chemical Free Energy Model
L-I15	Hideo Nagatomo	Osaka University	An optimum design of a cone-inserted target implosion for reactor scale Fast Ignition
L-I16	Hongbo Cai	IAPCM	Study of the kinetic effects in indirect-drive inertial confinement fusion hohlraums
L-I17	Feng Wang	Laser Fusion Research Center	Progress of ICF Diagnostic techniques and experimental results based on Shenguang laser facility in China
L-I22	Keisuke Shigemori	Osaka University	The role of hot electrons on ultrahigh pressure generation relevant to shock ignition conditions
L-I23	Xiaohu Yang	National University of Defense Technology	Transport of ultra-intense laser-driven fast electrons in dense plasmas
L-I24	Leejin Bae	CoReLS, IBS	Investigation of relativistic electron transport in solid targets irradiated by ultrahigh intensity laser pulses
L-05	Hui Cao	IAPCM	Laser repointing scheme for spherical hohlraum with 6 laser entrance holes on the SG Facility and the National Ignition Facility
L-06	Kai Li	IAPCM	Escape of α -particle from hot-spot for inertial confinement fusion

Amendt, L-I34

High-Volume and -Adiabat Capsule ("HVAC") novel ignition path features $\cong 2x$ lower fuel compression requirement ($\rho R \simeq 0.5$ g/cm²) than CHS ignition mode

Volume ignition mode uses high fuel adiabat α , which large capsules can support due to high margin in rugby hohlraum

Toward laser fusion mini-reactor CANDY, pellet injection R&D are on-going MORI, L-137

Pellet injection system

(1) Beads (w/ fusion reaction)

For neutron generation

Achieved 10 Hz, > 2000 beads

Laser illumination ratio > 70%

KOMEDA SR2013, MORI FST2019

(2) Spherical shells (test bed)

For fuel implosion and fast heating

Achieved 0.5 Hz, 7 shells

MORI NF2019

CANDY (2010~): Demonstration of Laser Fusion Energy Conversion *Kitagawa PFR 2013 Kitagawa J. Phys Conf. Ser. 688 2016*

L-I35	Dong Yang	Research Center of Laser Fusion	Laser Plasma Instability in Indirect-Drive In usion on Shenguang Laser Facilities	ertial Confinement F
Sumn	nary			

A new experimental platform *octuplet* has been developed to study LPI under laser configurations close to the future.

The effects of several laser parameters on LPI have been studied.

Under current experimental conditions

- Changing single beam's F# while maintaining the whole octuplet's has little effect on LPI.
- Mitigation of LPI is not observed with multi-color beams.
 (δλ = 0.3nm @ 351nm)
- LPI depends strongly on the intensity of a single beam rather than the overlapped intensity, offering the potential to mitigate LPI in the future !

Yang, L-I35

The scattered light returns to each beam aperture

中国科学技术

Outline of the Summary

1) Overview of Laser Plasma Session

PL-17 (L)		Michel Ko	enig	Ecole Polytechnique		Overview of Laboratory Astrophysics Experiments at LULI
PL-21 (L)		Hitoki Yor	neda	University of Electro- Communication	15	Progress of inner-shell ionized hard x-ray laser pumped by intense XFEL pulses
L-I12	Dominik I	Kraus		ltz-Zentrum -Rossendorf	Ioniza	tion dynamics in CH plasmas at Gbar pressures
L-I13	Mrityunja	y Kundu	IPR		Short	pulse laser cluster interaction: unification of resonances
L-O3	Atur Kum	Atur Kumar IPR		Excitation of magnetosonic solitons in with high power, pulsed CO2 laser in an overdense gas-jet target		

Laboratory exploration of astrophysical outflow morphology regulated by magnetized disk wind

Found that it's the external Alfvenic Mach number determining the outflow morphology, which converting from well-collimated jet to knotty jet and finally to less-collimated lobe

Towards higher resolution X-ray radiography using lithium L-I39 Paul Mabey LULI fluoride detectors Summary of X-ray radiography results

CCD / Image plate – currently used X-ray detectors

Static RTI modulated target (experiment)

Driven target (simulation)

Driven target

Lithium Fluoride – a new X-ray detector

L-O4 Bao Du IAPCM IAPCM Overcoming the forest-effect in probing the Weibel instability generated electric and magnetic fields from proton radiography

Ability : providing the average strength and main wavelength of both E and B fields

3D-PIC simulation

$$|E_{\perp}|_{rms} = 3.1 \times 10^9 \,\text{V/m}$$
 $\lambda_{|E|} = 27 \,\mu\text{m}$
 $|B_{\perp}|_{rms} = 23 \,\text{T}$ $\lambda_{|B|} = 35 \,\mu\text{m}$

Reconstructed from proton radiography

$$|E_{\perp}|_{rms} = 3.6 \times 10^9 \,\text{V/m}$$
 $\lambda_{|E|} = 24 \,\mu\text{m}$
 $|B_{\perp}|_{rms} = 18 \,\text{T}$ $\lambda_{|B|} = 48 \,\mu\text{m}$

Spectrally-tunable THz pulses with the highest pulse energy (>100mJ, world record reported in lab) are generated from relativistic picosecond laser-foil interactions

Energetic electron bunch

Theoretical model

Electron emission and ion acceleration can induce THz radiation. \bigcirc ps duration \rightarrow Coherent at THz \bigcirc nC-µC charge \rightarrow High power

Experiment @ Vulcan

- Sub-TW-level THz pulses are obtained;
- THz spectra can be controlled by tuning laser or target parameters;
- THz radiation is used as an *in-situ* diagnostic of the escaping and sheath electrons.

Comparison with other THz sources

Lithium-like aluminum ion recombination plasma X-ray laser at 15.5 nm

L-I-8 Y. Sakawa (Osaka-U, Japan) Ion acceleration by high-intensity laser-driven electrostatic collisionless shock

 \bigcirc

Conclusions

➤ Newly established ultrahigh power laser facilities make relativistic plasma physics the most active research field, in particular, laser-plasma accelerator, ultra-bright sources, nonlinear quantum electrodynamics, etc;

➢ New schemes for laser fusion are proposed, and ignition physics still is the key issue for inertial confinement fusion.

➢ High-energy-density physics is a very diverse and active field, including laboratory high-energy-density astrophysics, warm dense matter physics. Novel diagnostic techniques are essential for new physics.

